skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 20, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available April 28, 2026
  4. Free, publicly-accessible full text available November 2, 2025
  5. While augmented reality (AR) headsets provide entirely new ways of seeing and interacting with data, traditional computing devices can play a symbiotic role when used in conjunction with AR as a hybrid user interface. A promising use case for this setup is situated analytics. AR can provide embedded views that are integrated with their physical referents, and a separate device such as a tablet can provide a familiar situated overview of the entire dataset being examined. While prior work has explored similar setups, we sought to understand how people perceive and make use of visualizations presented on both embedded visualizations (in AR) and situated visualizations (on a tablet) to achieve their own goals. To this end, we conducted an exploratory study using a scenario and task familiar to most: adjusting light levels in a smart home based on personal preference and energy usage. In a prototype that simulates AR in virtual reality, embedded visualizations are positioned next to lights distributed across an apartment, and situated visualizations are provided on a handheld tablet. We observed and interviewed 19 participants using the prototype. Participants were easily able to perform the task, though the extent the visualizations were used during the task varied, with some making decisions based on the data and others only on their own preferences. Our findings also suggest the two distinct roles that situated and embedded visualizations can have, and how this clear separation might improve user satisfaction and minimize attention-switching overheads in this hybrid user interface setup. We conclude by discussing the importance of considering the user's needs, goals, and the physical environment for designing and evaluating effective situated analytics applications. 
    more » « less
  6. Free, publicly-accessible full text available December 1, 2025
  7. Understory forest plants are often limited by shade from the canopy above them. Many such species therefore make use of a shade avoidance strategy referred to as “phenological escape” to access ephemeral light availability during periods when the canopy above them is open (e.g., in early spring). In this primer, we review past literature on phenological escape and related topics. We discuss (1) the physiological importance of this shade avoidance strategy, (2) the effects that climate change may have on species performance via changes in phenological escape, (3) the potential for climate change to result in phenological mismatch related to shade avoidance, and (4) the potential avenues of future research in this area of study. Phenological escape is an important strategy used by spring-active plant species ranging from spring ephemeral wildflowers to deciduous tree seedlings, allowing them to assimilate 50%–100% of their annual carbon budgets before the canopy closes above them. Access to spring light, and thus success of this shade avoidance strategy, is projected to change in response to climate change. Change in access to light, and therefore change in spring performance, likely depends on functional group (woody vs. nonwoody plants), continent, and other geographic and environmental drivers. 
    more » « less