skip to main content


Search for: All records

Creators/Authors contains: "Lee, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 29, 2024
  2. Abstract

    Within cultural heritage, there has been a growing and concerted effort to consider a critical sociotechnical lens when applying machine learning techniques to digital collections. Though the cultural heritage community has collectively developed an emerging body of work detailing responsible operations for machine learning in galleries, museums, archives, and libraries at the organizational level, there remains a paucity of guidelines created for researchers embarking on machine learning projects with digital collections. The manifold stakes and sensitivities involved in applying machine learning to cultural heritage underscore the importance of developing such guidelines. This article contributes to this need by formulating a detailed checklist with guiding questions and practices that can be employed while developing a machine learning project that utilizes cultural heritage data. I call the resulting checklist the “Collections as ML Data” checklist, which, when completed, can be published with the deliverables of the project. By surveying existing projects, including my own project, Newspaper Navigator, I justify the “Collections as ML Data” checklist and demonstrate how the formulated guiding questions can be employed by researchers.

     
    more » « less
  3. Abstract Temperate understory plant species are at risk from climate change and anthropogenic threats that include increased deer herbivory, habitat loss, pollinator declines and mismatch, and nutrient pollution. Recent work suggests that spring ephemeral wildflowers may be at additional risk due to phenological mismatch with deciduous canopy trees. The study of this dynamic, commonly referred to as “phenological escape”, and its sensitivity to spring temperature is limited to eastern North America. Here, we use herbarium specimens to show that phenological sensitivity to spring temperature is remarkably conserved for understory wildflowers across North America, Europe, and Asia, but that canopy trees in North America are significantly more sensitive to spring temperature compared to in Asia and Europe. We predict that advancing tree phenology will lead to decreasing spring light windows in North America while spring light windows will be maintained or even increase in Asia and Europe in response to projected climate warming. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    We introduce scadnano (short for "scriptable cadnano"), a computational tool for designing synthetic DNA structures. Its design is based heavily on cadnano [Douglas et al., 2009], the most widely-used software for designing DNA origami [Paul W. K. Rothemund, 2006], with three main differences: 1) scadnano runs entirely in the browser, with no software installation required. 2) scadnano designs, while they can be edited manually, can also be created and edited by a well-documented Python scripting library, to help automate tedious tasks. 3) The scadnano file format is easily human-readable. This goal is closely aligned with the scripting library, intended to be helpful when debugging scripts or interfacing with other software. The format is also somewhat more expressive than that of cadnano, able to describe a broader range of DNA structures than just DNA origami. 
    more » « less